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ABSTRAC(CT

An approach tolens design is described in which the ratio of the group velocity 1o the
speed of light (the group index) in glass is used, inconjunction with the more familiar phase
index of refraction, 10 control certain chromatic propertics of asystein of thin lenses in contact. It
is shown that at the wavelength of a maximum or mimimum (where the phase power of a lens is
locally independent of wavelength), the group power is equal to the phase power, It is further
shown that in a lens consisting of three or more clements, the phase and group powers can be
constrained to be both equal and independent of wavelength (achromatic) at onc or more
wavclengths.] n the neighborhood of such wavelengl hs, both the first and second derivatives of
phase powcr with respect to wavelength arc zcro, giving this type of lens (in principle) an
exceptionally high degrec of achromatism not pieviously described, herein called group-
achromatism. The first-order design of thin-lens systems isillustrated by examples with the help

of a computer program incorporating the methods described.

Key words: lens design, group velocity, achromatism, sccondary color, refraction, dispersion,

optical glass. interferometry, ultrashort pulses




INTRODUCTION

The index of refraction normathy tabulated In glass catalogs and used in lens design is,
of course, the phase index that ordinarily appears in Snell’slaw of refraction. In a glass whose
(phase) index at a particular wavelength is . the phase of atightsignal propagates atl the speed
c/p, where c is the speed of lightin vacuum. 110WCVCI, in a dispersive medium, a wave-packet or
photon carries cnergy (or in format ion) at aspeed ¢fy, the group velocity I«t " where the group
index of refraction (the ratio of the group velocity to c) is related to the phase index through the

diffcrential equation

vy = - A (d/dr). (2)

Two derivations of fq.lare givenin the Appendix. Since dp/d». is always negative in glass. the
group index for any glass is always larger than its phase index (cxcept in the vicinity of a
resona Nee).

The difTerence between the two indices p and y is a measure of the dispersive power of
the glass. In lens design’the dispersive power of glass (relative to its refractive power) is
customarily represented by the Abbe number or constringence v, and the partial dispersion P.

computed for example (for a particular wavelength range near the Fraunhofer d line) from the

formulas
v ® (g 1)/ Gy pe). (3a)
Pa = (a1 (e 1o (3b)

1lowever, it is possible, computationally convenient, and instructive to make explicit usc

of the group index of refraction of glass together withthe more conventional phase index in




designing achromatic lenses. (In this article. the terin achromat is meant to include allty pes of
multi-clement lenses in which the chromatic variation of poweris controlled. ) As will be shown,
it is possible to control notonlythe power of a lens system at a sclected set of discrete
wavclengths (asin standard methods). but also (usi 11g both phase and group indices) to control
dircctly the location of local maximums or minimums (in other words turning points), where the
power of thelens is local ly independent of wavelength, as well as to cent rol the location of
stationary points. where both the first and the sccond derivative of the phase power of a

compound lens is z¢ro.

TWO-ELEMENT LENS DESIGN

To design a two-clement achromat it is customary to constrain the power of the Iens
combinat ion at two scparatc wavelengths, requiring the lens to have the same power at both
wavclengths. Here, we investigate the design of a tw o-clement thin-lens achromat in which the
phase power 11 and the group power [" are required to be equal to each other at one and the same
wavelength.

The phase power is the curvature of a wavefront when it emerges from a lens
illuminated by a distant point source. To visualizc the physical meaning of group power, imagine
the lens to be illuminated by an extremely short pulse of light from the same distant source. The
group power isthe curvature of the surface of maxi Inure encrgy density in space, as the pulse
lcaves the lens. The group power of a single lens clement is always grcater than the phase power,
In a lens consisting of more than one clement. the group powcer can be greater than, smaller than.
or equal tothe phase powcr at different wavelengths, depending upon the construction of the
lens.

Since the power of two thin lenses 1n contact is the sum of the powers of the individual

clements, we have for such a two-clement lens with equal phasc and group power




1 Gu-Ddy A (o= 1)42 * (ri- Doy 4 (re-Dda (4)

where the subscripts refer to the first and sccond clements and ¢ is the difference between the
curvaturcs of the two surfaces of each thin-lens clement.

If we define, analogously to the Abbe number, anumber

G =71 ©)
Y

wc obtai n from Eq. 4, after some algebra, the resul

G
--1) =1 ! 6
¢ (v, --1) G -G (69)
and
1 (}2
=% - 6b
¢, (v, 1) G, -G, (6b)

These expressions arc formally similar to the classical definition of a two-clement
achromat, cxcept that group indices and G numbers arc used in place of phase indices and Abbe
numbers. 1.ikc the Abbe number, G measures the refractive power rclative to the dispersive power
of the glass. In the conventionally designed Iens the power of the achromat will be the same at
the two wavclengths for which the Abbe numbers were calculated (for example, the d and F
lincs), with a turning point somewhere between them. in the lens defined by Eq. 4. a turning,
point isfocated at the wavelength for which the phase and group indices were calculated, where
its power will have the specificd value. The reason for ibis coincidence willbe clear when the

general case of an N-clement lens is considered.




The (i number defined by Eiq. 5 is proportional to the spectral V. number V), defined by

J 1 Rayces®. the relat ion between these pat a meters being

V;_ has the dimension of length, whereas G is dimensionless
N-ELEMENT LENS DESIGN

Foralens consisting of N thin clements in contact, the total phase power of the

combination, at the jth wavclength, is

H, :':};(uy ~D¢ )

whilc the group power atthe same wavelength is

[V
re X, ®

1 f t he phase and group powers arc constrained to be cqual at the jth wavelength then

0= Yy, ~n )¢ <€)

(Notc that if aturning point is to be located at the Jth wavelength then by definition, and using

Eq 7. we have the condition



J Ilk/ /c'»\: X(au” O\ =0

nut by virtuc of I:q 1. this condition lcads directly to Eq. 9. Inother words. aturning point in

phasc power i nevitably occurs at the jth wavelength when the phase powecr is equalto the group

power there. )

d 11 ’n 1 A(y -n
S o= L=y e =AYy cp )N e o
S Tl T L(Vn “v) Moo ¢ 10

where the summations arc taken over the N clements. Denoting the dimensionless quantity in

square brackets by A, we have, for the gencral form of sccondary color.

I«
o= - 1
AS/ A 2 LA” (,)l (H
/

Thiswilibc @ minimum or amaximum if. in addition to the preyiously described constraints

(following the standard lcast squarc procedure). we require, for anyk(k 1.2. 3... N).

7'6 (Sf)f—() or - d (S?): (12)




For the simplestcascof N 2, onc canextend Fq 11

S7=(A ¢ H42A A ¢ AN HTYIN 2 (13)
| ;0 1y 2,172 2,2 i

Inthis case it is easily shownthal either version of Fql2 leads to the mull

AI /d)l = AZ/ ¢2

Making usc of Iigs. 610 constrain the solution for a binary achromatto place alocal extremum at

2. we arrive a the result (for this case)

1 — 21 (14)
’ylt i /Lh ’YZt ‘ MZ!
In general let us define
A
0o = -7 (15)
! i B Mu

for theth clement, as a measure of the rate of change of dispersive power with wavelength
relative to the dispersive power itsclf. The parameter @ is proportionalto the spectral relative

artial dispersion P, defined by Rayces”. the refation bein
p P &

0 =4A ]’A

® is dimensionless w hercas P;_has the dimension of mverse length




From Eq. 14 it follows that secondary color at an extremum will be a minimum if the
two glasses in a binary achromat have the same value of ©. Asis well known, at a given © (or
P) the available range of G (or V) is quite small.

Returning to the gencral casc of N clements, it follows from Hqs. 12 and 11 that if
secondary color (as the tcrm is here uscd) at the jth wavelength isa minimum, then at that

wavclength, for any k,

SA = 0. (16)
Jok

Since Ayj is never zero, it follows that Eq. | 6 is equivalent 1o the requircment

EAU ¢ = o (17)

This means that for a given set of glass typesin a lens, w ¢ can choosc lens curvatures that
minimize secondary color at some waveleng(h (satisfying Eq. 17). which may also be the location
of a turning point (satisfying Eq.9). For N>2. thislcaves N- 2 additional constraints to be
imposed to fully define the lens.

Eq. 17 sates that if the second derivative. S, of the dioptric power of the lens is a
mini mum at the jth wavelength, the second derivative itself is zero at that wavelength. This
might have been cxpected, given the fact that. since .S, can be either positive or ncgative, the only
way its absolutc value (or Sﬁ) can be aminimum isfor S, itself’ to be zcro.

1 f t he phase power is cqualto the group pow cr (so that the phasc power has zero slopc)
at 2, and if thc second derivative S, is also zero there, then the jth wavelength will be neither a
maximum nor a minimum point. but the location of ahorizontalinflectional tangent, which
could be called a stationary point, at which the sccondary color is zcro.

I it should happen that ©;jis the samce for all of the clements (not casily achieved with

rcal glass), then from Eq. 15 it follows that Fq.17 would be merely a constant multiple of Eq. 9.



In that case, if Fq. 17 (minimizing sccondary color) 1s used as a constraint at the jth wavelength,
a stationary point wil 1 automat ically be located there. so thatl:q9 could not be used as a scparate
const raint a thc same wavclength in this casc ( however, 1tcould be used ata different
wavclength).

In the two-clement lens considered previously, wc mint mized seccondary color (in
principle) through the independent choice of glass tvpes to satisfy 1 .14, lea’ing the choice of
curvatures of the clcments free to sat isfy the two possible design constraints, namely Eqs. 7 and 9
atonc or two wavelengths,

in the design of a real lens using real glass itisnot generally possible to find several
glass types having almost the same ©jj and simultancously significantly differing G numbers (the
latter required to keep the powcrs of the lens clements from becoming excessively large).
Nevertheless, we sce that in a multi-clement lens (N>2), it is possible to climinate secondary
color in the neighborhood of a turning point through the independent constraint represented by
Eq. 17. In this casc, it is desirable to choose glass types in which the ©jj values arc as diverse as
possible, maximizing det] Al(sec discussion of matrix solution following).

In most applications, although it is possible, it would hardly be useful to minimize
secondary color (as the term is used here. mcaning the second derivative of lens power with
respect to wavclength) at some wavelength, unless that wavelength were also the location of an

extremum,

SOL1,UTION OF 1} I MA'] RIXEQUATION

For a system of N clements, we can impose atotal of N constraints. which may be of the
form givenbyEqs. 7.8, 9 or 17 or a combination of these Atlcastone of the constraints must
specify the power of the systemm a some \\ avclength. The sysiem of lincar equations can bc

expressed asamatrix equation

10



A¢ = p (18)

where p is an N-dimensional vector whosc components arc cither zcro (for a constraint expressed
by . 9 or Eq. 17) or the targeted valucs of the lens power under cach other constraint. ¢ is the
vector of lens curvatures, The matrix elements [Ajjl are the cocflicients of ¢;infiqs 7. 8.9 or 17
depending upon thc designer’s choice of the jth constiaint The solution is obtained by computing

the inverse of the N x N matrix A. Thus

6= A 'p (19)

A solution is possible only if the glass matrix A is notsingular, i.c. only if

det| A # 0. (20)

Otherwisc the powers of the lens clements would be infinite.

To minimize the powers of the lens elements it is desirable to choose glasses such that
|det]Aljis as large as possible, or at Icast not too small. since larger det| Al will keep smaller the
powers of the lens clements. The glass matrix is a (unction only of the paramcters of the glass,
bill it dots depend upon whether the constraints impsosed arc of the kind givenby}q. 7,8, 9 or
17 (or some other kind not explicitly considered hcre), and their wavelengths. A brute force
approach to the initial sclection of glass types for an N-clement lens with any given set of
constraints, feasible with a computer if the number of candidate glasses is not too large, would be
to actually calculate the value of [det] A)| for all MY/((M - N)!IN!' ) distinct combinations of M
di fMlerent candidate glass types. taken Natatime. and to favor the combinations giving larger
values. For M = 51 and N =3. the calculation of {det]Al}jforall 20825 combinations to find the

best 20 takes only two minutes on my 25 Mhz. laptop computer.

11



A more intuitive approach follows if det] Afis given a gecometrical interpretation. Thus,

for a 2-clement achromat constrained by Fq. 7 and Liq 9. let

u, (=D 4 () -p)j and U, = (Ha-1)it (Y2-H2)j

be the pair of two-dimensional vectors extending from the origin to the two glass points in t he
plane defined by orthogona axes (p-1), (y-f) in Figure 1. It \\ill be scenthat the length of the
veclor cross-product u 1 x U,is just the arca of the parallclogram (or twice the area of the
triangle) defined by the two vectors. It is easily shown that ju; x Ul is identical to [det[A}]. The
selection of glass types for the achromat will be optimized by maximizing this arca, or det|A}. A
similar interpretation applies if, instead of Eq. 9. sonic other sccond constraint is used. The
corresponding functions of glass indices (evaluated a onc or two wavelengths) would then
become the coordinate axes in a diagram similar to Figure 1.

I n the case of three clements, asimple gecometrical interpretation is likewise possible. In
this casc three vectors u g, U,and u3 from the origin represent the coordinates of the three glass
types in a3-space whose axes arc the coefficients of ¢»inany three of the constraints (Eqs. 7.8,

9, or 17), onc of which must be either of the first two. It follows that the triple product

[u; X U* . uyl,

or any permutation thereof. is the volume of the three-dimensional parallclcpiped defined by the
three vectors, and identical to|det} A]l. The sclection of glass types for a lens triplet having given
constraints will be optimized by making this volume aslarge asis practical.

In the general case of N clements, it can be conjectured that det[ A]| represents a volume
(whichthe lens designer might seek to maximizc) in an N-dimensional orthogonal vector space

whosc axcs depend upon the types and wavelengths of the const raints imposed upon the Iens.

12



Since this is not casyor cven possible to visualize, actual calculation of det|Affor various glass
combinations under considcration may offei the best guidance in this case.

‘T'he problem of designing a thin lens consisting of N clementstosatisfy N+ 1 constraints
through the judicious choice of N glasses (such a lens being called by | lerzberger a
superachromat in the case N = 3) has been studied extensively. Following, for example,
licrzberger 1 lerzberger & McClurd essing?, Flooglana!?, Sigler ' and Maxwell 12, one WCS
that formally the problem can be addressed by considering the design of au (N+ 1)-clement lens,
in which by selection of N glasses the power of onc of the elements is brought 10 zero, or nearly
S0, in which case that clement can be omitted. | Jsing | iqg. 19 this would be amenable (o a brute
force solution akin (o the evaluation of detfA] previously discussed, and would be applicable
under any of the constraints described. Whether such an approach would Icad o interesting

results is an open question that is beyond the scope of this investigation.

1EXAMPLES

A FORTRAN program for designing multi- clement thin-lens achromats was created in
order to implement and test the genceral approach and specific types of constraints considered in
this paper. Sclimeicr cocfficicnts for the sclected glasses arc obtained from a computer-readable
form of thc Schott Optical Glass Catalog (supplcmented with special glasses) and used to
compute phasc indices at the required wavelengths Group indices arc computed by numerical
different iation of the phase index withrespect 10 wavelength and by using Fa. 1. The matrix
equation (Fiq.18) is solved by standard proceduré%The phase and group powers of the lens
combination arc then compuied over arange of wavclengths for graphical display.

Three types of  constraints arc used. from among the four described i the preceding
section. ‘1 ‘hose used arc summarized inTable 1. They can be imposed in any combination and in
any order up to a total of N constrains to define a lens consisting of N clements. provided the

dioptric power of thelens is defined for at lcast onc wavelength by atype 1 constraint.
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Examples of thin-lens achromats designed using the method< described arc illustrated in
Figs. 2-5. The glasses sclected for these examples were chosen without consideration of their
spectral transmittance and other physical propertics that might affect their suitability for building
anactual lens, Likewisc, the control of spherical aberration and spherochromatism is ignored
here.

The first example (Figure 2 and I'able 2) is atwo-clement achromat constrained by fiq.
7 to give f = 100 at 600" nm and constrained by F:q. 9 to have a turning point a 500 nm. At the
extremum, the foca length (f =99. 9275. not indcpendent ly const rained) computed from the
group index is equal to the focal length computed from the phase index, in compliance with the
typc 2 constraint applied at 500 nm. Note that wher ¢ the phase power of the lens is increasing
with wavelength, the group power is weaker than the phase power, and vice versa. In this and
other examples, at wavelengths far from the stationary point(s). the group power departs
substantially from the phase power of the lens.

The second example (Figure 3 and Table 3) is a three-clcment lens constrained by Eqs.
9 and 17 at 500 nm, where the lens is also constrained by Eq. 7. The three glasses arc those used
for illustration of an apochromat by Kingslakcs. Here the example illustrates the flexibility
afforded by the method under discussion to target the wavelengths of cxtrema and stationary
points and, if desired, to control the power of the system at those poi nts.

When the lens in Table 3is corrected for spherical aberiation al S00 nm as an F/7.8
ccmented triplet, the design achicves a Stichl ratio of 0.9 or greater for wavelengths from about
460 nm to 570 nm. Over that wavelength range the chromatic variation of rclative phase-fhca]
{cngl hisabout 10-5. Thisis Icss than the di ffraction dept h of focus (and therefore of no practical
significance) unless the lens is scaled to about 780 mm (30 inches) or larger aperture at F/7.8.
The wavelength range over which the lens is cffcctively group-achromatic is considerably
smaller, SO that the design could (for an application requiring this property) be appropriate for a

smaller lens.




Figure 4 compares the foregoing lcns with atriplet made of the same materials but
constraincd only by [g. 7 at three closely spaced wavclengths (480,500 and 520 rim). The results
arc practically the same, but remain fundamental Iy different I f the three wavelengths arc brought
closer and closer togcther, the glass matrix | A | will become progressively more poorly
conditionedunti 1, in the limit, the solution becomes i ndeterminate

The third example (Figure 5 and ‘1'able 4) i lustrates the power of the matrix approach
used here to prc-design chromatically controlled thinlens systems consisting of many clements,
in this case eight. In the example, type 2 constraints arc placed at 500,600, 700, and 800 nm,
and the focal Iength of the Iens is 1000 at each of those wavelengths. Clearly, atlcast for paraxial
rays or in the abscnce of spherochromatism and other abertations, such alens would perform

very well from around 460 to nearly 1000 nm, if it could be built to satisfactory tolerances.

DISCUSSION

The approach to first-order thin lens design considered in this paper might be called the
Y- 1t method, since the difference between the group and phase i ndices is used explicitly in
controlling the wavelength variation of the lens power. In making usc of infinitesimal derivatives
of the phase index i with respect to wavclengthinstcad of glass properties defined as ratios of
finitc differences, the method is closely related to that of Rayces®. 1 Jowever, the explicit usc of
group indices of refraction in lens design has not been described or suggested previously as far as
Tknow. It offers some particularly interesting features (1) Like Rayces’s approach using V;, and
Pj.the y- (4 method provides a definite, calculable and physical ly mcaningful measure of the
dispersion of an optical glass at any wavelength, avoiding the arbitrariness inherent in classical
glass parameters such as Abbe number and partial dispersion: (2) the approach therefore affords
a notational and computational simplicity well suited to implementation in computer programs

(as exempilificd in the matrix method demonstrated here, in which. as shown, the determinant of

the glass matrix. det| A |, has a rigorous geometrical interpr etation;). (3) by using the y-




mcthod. a designer can constrain specifically the wavel engths at w hich local extrema and
slationary points occur (where, as shown, the phase and group dioptiic powers of a multi-clement
lens arc identical). instcad of targeting the power at neighboring wavelengths and adjusting the
stationary points (if nccessary) by trial and error; and (4) using the y'- {1 method we have shown
that secondary color at an extremum can be minimized (madce zcro) in a multi-clement lens
(N>2) by imposing a definitc independent constraint involving the curvatures of the individual
clements, of the form givenby liq. 17.

It is interesting to note that. in the neighborhood of such a point (as in Example 2), the
group power of the lens aso has a local cxtremuin, so that both arc locally independent of
wavclength (i .c., the lens is achromatic and con focal in both phase and group power). Such a
lens seems not to have been described previously. This specia property might be teried group-
achromatism, for lack of a better name. In the neighborhood of the \\ avelength for which alensis
group-achromatic, and only in this case, a photon (or wave packet of finite length and non-zero
bandwidth) from a distant point source will arrive at the focal point not only with the same phase
(as required to form a diffraction-limited image), but af one and the same time, N0 matter where
within the aperture it might have pissed through the lens (in the absence of spherical and other
aberrations). This characteristic is normally of no practical significance for an imaging system,
but it might be a consideration in certain applications involving broad-band interferometry where
fringe visibility is an issue, or in systems for focusing ultrashorthight pulses, both being cases
where an optical system might need to be exquisitely achromatic.

While the thin lens approximation can be useful in starling the design of a thick lens.
ultimately the lens must be optimized by cxact raytracing. The group index of refraction, and the
concept of group power (as well as group aberrations) can be applied in exact raytracing which
(using in Sncll'slaw the group index instead of the phase index) will give the paths normal to a
surface of maximumencrgy density propagating through a system. Thus. it would be possible to
control group-aberrations sclectively in a thick fens svstem, using for example Glatzcl’s adaptive

method of optimization as developed by Rayees! and applied i EIKONAL.
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Apart from any pract ical valuc the - ft method might offer. it clucidates. perhaps for

the first time, the physical significance of group velocity in the performance of alens system
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APPENDIX

GROUP VELOCITY IN GEOMETRICAL OPTICS

While thc concept of group velocity is familiar in wave mechanics and clectrical
enginecring (c.g. the theory of transmission lines and wave guides), the not ion is not ordinarily
cncountered in the context of geometrical optics. The following derivat ions of Fq. 1 arc offered

for the convenience of the reader,

1. Wave derivation

Consider an amplitudc-modulated tight signal propagating within a dispersive medium,
Assume the carrier to have a constant monochromatic frequency o = 2rv = 2nc/i  radians/see,
while the modulation takes place with a single frequency Am <<a. If the carrier is a linearly
polarized plane wave traveling in the + x direction at speed c/yt, the transverse eect ric ficld can

be represented as a function of time t and position x by the complex amplitude

](;cmnm' :A(,’ Pw(t-apic) (A I )

In Eq. A 1.1, cisthe speed of lightin vacuum, and jtis the refractive index of the medium for
light of wavelength .. As shown in textbooks onlourier analysis, the sinusoidal amplitude
modulation gives rise to sidebands at the frequencices o+Ao and m Am above and below the

carrier {requency, the corresponding electric fields having the complex amplitudes

l';-‘ :I;(’ (o YAa Nt (p 4Ap Y)x/c] and l’,‘i :];er(u “Ae Yt -{p - Ap )y o (Al?)




B is the amplitude of the modulation, and the variaton of p with o is taken into account. The

total electric ficld at (x, 1) isthus

1</mu(: < + ]'/-’ _i l'/ (/\]"‘)

Lixpanding the products of the quantitics in parentheses in g A 1.2 neglecting terms of order A

oA, and factoring outthe carrier signal,onecanwritebg. A 1.3 as

Jreel = et [ 442 Beos(Aw | ~{(w Ap A p Aw )X/()]. (A14)

The cosine-term represents a signal of amplitude B traveling in the + x direction a speed x/t = Vo,

the group velocity, where (in the limit as Aw -> O)

dp
=ptw- = =v. (A1.5)
ve dw

nut since 8o/d% = (2nc/22),Eq. A 1,5 is identical 10 Eq.1The derivation brings out the fact
that whereas a surface of constant phase (a wavcfront) propagaies at speed c/p, the information
carried by an amplitudc-modulated light bcam propagates at a speed dcpcndent upon the

wavelength-variation of the refractive index of the medium, namely the group velocity cfy.
2. Derivation from the viewpoint of interferometry

in a “I'\\ynan-Green intcrfcrometer (or any tivo-beam intcrlcrometer) with equal (i.e.
balanced) thick ncsscs of dispersive matcrial in the t\ o arms. white-light fringes (fringes of zcro

order) can bc observed only if the path Iengths in the two arms arc made equal to within a

tolerance that is approximately equal to the coherence length of the light (- A2/AQ).
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The fringes of zcro order will disappear when adispersive plate is introduced into only
onc of the arms. However, if the bandwidth is sufficiently narrow or the plate sufficiently thin.
the fringes can bc restored by suitably shortening the path lIengthin air in the same arm (or
lengthening the path in the other). The amount, Al. by whichit is necessary to shorten (or
Iengthen) the path in air can be calculated by the following physical considerations! 5

First, suppose that the plate is made of an imaginary matcrial whose refractive index p
is the samc at al wavclengths. In this case, the white- light fringes will be restored if the air path
Iengthin the arm containing the material is shortened by exactly an amount (U - 1), w'here f' is
the thickness of the plate, I.ctit bc supposed that this adjustinent has been made and the fringes
arc again visible in light of finitc bandwidth centered at wavelength A,

Next suppose that, without changing the value of the refractive index at Ag. the
dispersion of the matcrial is restored so that ¢u/¢ A is no longer zero, Now, for any two
wavelengths A and A,near A scparatedby a wavelength differcnce O =A2- A |, there will

arise a phasc difference given by

27 (o |ou

Ay =
v )\0 2N

(A2.1)

Becausc of this phasc diffecrence (or phase gradicnt as a function of wavclength), the light
amplitudes summed over differing wavelengths will no longer add constructively to form fringes
of maximum visibility.

But now suppose that an additional air path ¢ be introduced into the same arm. Between
t he two wavelengths previously considered, this additionalair path will cent ributc ancw phase

di fTerence given by

I
A [ 2 6 - = U A2.2
Y P \ [ ) ( )
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1 will be apparent that to restore constructive interference the additional air pathé should be

chosen to be just that required to compensate for the dispersion of the glass platc: that is.

AY'=— Ay (A2.3)

It follows that

N (A2.4)
0 ax

The total air path correction to compensate for the introduction of the glass plate is thus
Al = (u~-1l46 =- (y 1L, (A2.5)

where Y is duly given by Eq. 1. From the wave derivation it was evident that c/Y is the velocity
of propagation of a wave packet. The present derivation shows, then, that fringe visibility is
restored when the paths arc adjusted so that a wave packet or photon traversing the two-bcam
interferometer arrives at the detector simultancously by both paths. The experiment considered

would provide a direct measurement of the index Y at A,
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TABLE |

LYENS DESIGN CONSTRAINTS

constraint type description

1 dioptric power fixed at 7.

2 first derivative zcro at 2.

3 second derivative zcro at 7.

24
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equation 7
cquation 9

equation 17



TABI k2
OPTICAL CONSTANTS AN1) CONSTRUCTION PARAMETERSTIFOR A

TWO-ELEMENT THIN-LENS ACHROMAT (EXAMPLE 1)

=100
glass name L. pm u y G ® constrain
ype
FK5 (0-600000 J.487054 1.507505" 24 816301 (),05()234 !
K6 (,6000(0 1.635261 1.686472 13,404796  0.1s5191 !
FKs (,500000 1.491449 1519843 18.307880  ().1()9634 2
F6 0.500000 1.646817 1.724774 9.297117  0.381761 2
Clement ¢ (curvature) U$ (radius) glass glass code
! 0.39084 SE-~01 0.255856E4 02 FKS 487704
2 -0.142359E-01 -0.702451E+4 02 F6 636353
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glass name
FKS
KzFSH

SK15

clement

‘1ABLE3

OPTICAL. CONSTANTS AND (OBSTRUCTION PARAMETERSFOR A

THREE-ELEMENT THIN-LENS ACHROMAT (1 X AMPLE 2)

. pum u
0,500000 1.491449
0.s00000 1,621067
0.500000 1.712489

¢ (curvature)

0.890669E-01
-0.7548491:-0]

().183994E-01

=100
Y G
1.519843 18.307880
1,679380 11.649486
1.814297 7.998414
U+ (radius)
0.112275E402

26

-0.132477E4+02

().543498 E+02

©
0.109634
0,257418

0.s25363

glass

FKS5

KzkS1

SK1S

glass

code
487704
613443

699.301




TABLL 4
CONSTRUCTION PARAMETERS FOR AN

FIGHT-EL EMENT THIN-LENS ACHROMAT (EXAMPLL: 3)

f 1000

clement ¢ 1 glass
! (),2444361 :-02 0,4091051 EA403 FK54
2 0.843603FK-02 (). 118539E+03 PK2
3 0.492624E-0 | 0.202995E402 KS

4 -().49214 5%:-01 -().2()3 194EI 02 KE3
5 -0.507598 E-01 -(). 197006E-1 02 1152
6 0. 5002901:-()1 0.199884E+0'2 LES
7 -0.1()5799} :-01 -0.945191E102 Fo6

8 0.2462 0926E-03 0.4061585714 04 SF59

27

glass code
437907
518651
522595
515547
541472
581409
636353

952204




CAPTIONS TO FIGURES

Fig. 1, Plot of (y- ) versus (i - 1) for 203 Schott optical glasses and Cal’2 for wavclength 300
nm. The vectors u | and u; connccting the originand the coordinates of I6 and F K5,
respectively, define a triangle whose arca is equal to one-halt’ the valuc of dctjAf for alens

constrained by Fgs. 7 and 9 and considered in Examplc} (scc text).

Fig. 2. (Examplc 1) Wavclength dependence of focal length in (bin-lens approximation for a 2-
clement achromat (Table 2) in which the focal length is 100 at 600 nrn and constrained to bc a
turning point (independent of wavelength) at 500 nmi by Eq. 9: thus the phase power and the
group power have the same value at 500 nm.In this and other illustrations both the phase focal
length (heavy curve, from Eq. 7) and the group focal length (lighter curve, from Eq.8) arc

shown

Fig. 3. (Examplc 2) Wavelength dependence of focal length in thin-lens approximation for a 3-
clement lens (Table 3). The first and second derivativcs of power are constrained by Eqs.9 and
17 to be zcro at 500 nm. so that an inflexion (where the lens is achromatic and confocal in both
phase and group power) is located al that wavelength Insct shows the lens as a cecmented triplet

at ¥/7.8 corrected for spherical aberration.

Fig 4, () The stationary region of the group-achromatic triplet in Example 1 (Fig. 3). compared
with (b) a standard triplet made of the same glasses. but constrained only by Fq. 7 to be confocal

at three discrete wavelengths 480, 500 and 520 nm.

MORE
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Fig. 5. (Examplc 3) Wavcelength dependence of focal length in [bin-Ic]is approximation for an 8-
clementlens (Table 4) in which the focal lengths arc constrained by Fiq. 7 to be 1000 at 500. 600,
700, and 800 nm, and also constrained by Fq.9 to have turning points at thc same four

wavclengths.

EEND
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